Laser-based powder bed fusion of non-weldable low-alloy steels

نویسندگان

چکیده

This study focuses on the processability of four low-alloy steels (AISI 4130, 4140, 4340 and 8620) via laser-based powder bed fusion (LB-PBF). In as-built condition, alloys consisted tempered martensite that was result an intrinsic heat treatment (IHT) during LB-PBF. terms defects, a distinct transition in porosity observed correlated to volumetric energy density (VED). At low VED, specimens contained lack porosity, while at high they keyhole porosity. Additionally, cold cracking 4140 produced low/intermediate VEDs. could be mitigated by increasing VED or laser power, as both enhance IHT. enhanced IHT lowered material hardness below specific thresholds (<500HV <460 4140), ductility allowing avoid cracking. From these findings, crack-free, high-density (>99.8%) steel were without requirement build plate preheating.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Characterization of a Low Magnetic Zr-1Mo Alloy by Powder Bed Fusion Using a Fiber Laser

A low magnetic Zr-1Mo alloy was fabricated by a powder bed fusion (PBF) process using a fiber laser. The microstructure, surface morphology, and pore distribution of the as-built Zr-1Mo alloy were observed. Its magnetic susceptibility and Vickers hardness were evaluated by magnetic susceptibility balance and a microindentation tester, respectively. The as-built Zr-1Mo alloy mainly consisted of ...

متن کامل

Consolidation phenomena in laser and powder-bed based layered manufacturing

Layered manufacturing (LM) is gaining ground for manufacturing prototypes (RP), tools (RT) and functional end products (RM). Laser and powder bed based manufacturing (i.e. selective laser sintering/melting or its variants) holds a special place within the variety of LM processes: no other LM techniques allow processing polymers, metals, ceramics as well as many types of composites. To do so, ho...

متن کامل

Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions...

متن کامل

Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.

Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ the...

متن کامل

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Powder Metallurgy

سال: 2021

ISSN: ['0032-5899', '1743-2901']

DOI: https://doi.org/10.1080/00325899.2021.1959695